Program Statement: Write a JAVA program to find roots of a Quadratic Equation. If Discriminant is negative, display a message stating that there are no real solutions.
Java Program Image |
Tested on:
Software: Windows 8, Jdk 1.6, Netbeans IDE
Hardware: Intel Core i3, 4 GB RAM, 500 GB HDD
Software: Windows 8, Jdk 1.6, Netbeans IDE
Hardware: Intel Core i3, 4 GB RAM, 500 GB HDD
Source Code
@Author: Praveen Kanwar
import java.util.*;
class QuadraticRoots
{
public static void main(String[] args)
{
int a,b,c,d;
Scanner sn=new Scanner(System.in);
System.out.println("Enter a,b,c values: ");
a=sn.nextInt();
b=sn.nextInt();
c=sn.nextInt();
d=b*b-4*a*c;
if(d>0)
{
System.out.println("Roots are real and distinct");
System.out.println("Roots are:");
double r1=((-b)+Math.sqrt(d))/(2*a);
double r2=((-b)-Math.sqrt(d))/(2*a);
System.out.println("r1= "+r1);
System.out.println("r2= "+r2);
}
else if(d==0)
{
System.out.println("Roots are real and equal");
System.out.println("Roots are:");
double r1=(-b)/(2*a);
double r2=(-b)/(2*a);
System.out.println("r1= "+r1);
System.out.println("r2= "+r2);
}
else
System.err.println("Roots are imaginary!");
}
}
import java.util.*;
class QuadraticRoots
{
public static void main(String[] args)
{
int a,b,c,d;
Scanner sn=new Scanner(System.in);
System.out.println("Enter a,b,c values: ");
a=sn.nextInt();
b=sn.nextInt();
c=sn.nextInt();
d=b*b-4*a*c;
if(d>0)
{
System.out.println("Roots are real and distinct");
System.out.println("Roots are:");
double r1=((-b)+Math.sqrt(d))/(2*a);
double r2=((-b)-Math.sqrt(d))/(2*a);
System.out.println("r1= "+r1);
System.out.println("r2= "+r2);
}
else if(d==0)
{
System.out.println("Roots are real and equal");
System.out.println("Roots are:");
double r1=(-b)/(2*a);
double r2=(-b)/(2*a);
System.out.println("r1= "+r1);
System.out.println("r2= "+r2);
}
else
System.err.println("Roots are imaginary!");
}
}
Output
CASE 1:
Enter a,b,c values:
1 2 3
Roots are imaginary!
CASE 2:
Enter a,b,c values:
1 5 6
Roots are real and distinct
Roots are:
r1= -2.0
r2= -3.0
Enter a,b,c values:
1 2 3
Roots are imaginary!
CASE 2:
Enter a,b,c values:
1 5 6
Roots are real and distinct
Roots are:
r1= -2.0
r2= -3.0
Post a Comment